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I N C R E M E N T A L  D E F O R M A T I O N  M O D E L  F O R  A R O D  

L. I. Shkut in  UDC 539.370 

A nonlinear defor'mation model for  a rod with rigid cross sections is proposed. A complete system 
of local incremental equations, a variational equation equivalent to this system, and an equation 
of  virtual work are formulated. Numerical analysis of  the deformation of  a ring transmission is 
performed. 

Formulations of the problems of deformable solid mechanics in increments of the desired functions 
are used to calculate the increments of the deformation parameters in transition from one deformed state to 
another state that is rather close to the former. This approach leads to a constructive method for analyzing 
nonlinear problems since it reduces each of these problems to a sequence of linear problems. This approach 
has no alternative in the case where the constitutive equations of material are given in the form of relations 
between stress and strain increments. 

1. Equa t ions  of  F in i t e  D e f o r m a t i o n  of  a Rod.  We consider a rod as a solid body in a three- 
dimensional Cartesian space. The rod material is distributed over a small neighborhood G of a certain (base) 
line C3 C G. A system of curvilinear coordinates t j  is related to this line in such a manner that t3 is an 
internal parameter of the line, tl and t2 are the transverse coordinates orthogonal to t3, ti E A, t3 E [/I,/2], 
A is an arbitrary cross section of the rod, and li is a real number. 

In this paper, we use the notation adopted in [1, 2]. Variations of the deformation parameters are 
denoted by the symbol ~, and the desired and specified increments are denoted by the symbol A. The capital 
Latin subscripts take values 1, 2, and 3, and the lower-case Latin subscripts take values 1 and 2. The rule of 
summation over repeated indices is employed. Possible dependence on time is not indicated explicitly. 

In the three-dimensional space above G, we define the position vector g ( t j  E G) of an arbitrary point 
of the rod, the position vector a ( t j  E 6'3) of an arbitrary point on the base line, and the local coordinate 
basis a j ( a )  related to points on the line and consisting of the tangent vector a3 and the vectors al and a2 
orthogonal to the tangent vector. 

The rod is defined by the equation g = a + tiai.  The equalities g j  = Ojg, gi = ai, g3 = a3 + tibi, 
a3 -= 03a, and bi = 03ai (0j denotes differentiation with respect to t j )  introduce the body basis gj (g)  of the 
coordinate system and express this basis through the contour basis a j ( a ) ,  which, without loss of generality, 
can be considered orthonormal. 

Deformation of the rod into a certain finite state is represented by the mapping g --* g+(g), g j  --+ g+(g) 
and g-~ = Ojg +. The base line and its basis deform together with the rod: a ~ a+(a) and a j  ~ a+(a). The 
local orthogonal transformation 

a~ = O . a j ,  Oi| -~ 0, O .  0 ~ 1 (1.1) 

with rotation tensor |  introduces the convective basis a~ with initial value a j (a ) .  Henceforth, this 
basis is assumed to be the determining basis for the vector spaces above G and 6'3. Transformation (1.1) is 
represented in the form transposed with respect to that in [2], which is more common in the matrix calculus. 
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The finite deformed state  of the rod is described by the equation 

g+ = a + + t i a  ~ (1.2) 

This leads to the equalities g+  = a + = a ~ which identify the  deformed transverse vectors with the convective 
vectors. Generally, the vectors g+ ,  a +, and a ~ do not coincide with each other. Since the basis a~ is orthogonal 
by the definition and the basis a + can be nonorthogonal ,  the convective vector a ~ unlike a +, is no longer 
tangent to the deformed base line, i.e., a ~ ~ a + bo th  in magni tude and direction. 

Equation (1.2) corresponds to the linear approximat ion of the body displacement  field w ( g )  =_ g+ - g 

with respect to the transverse coordinates 

W = U -I- tiVi, U ---- a + -- a,  vi -- a 0 -- ai. (1.3) 

These relations specify rigid-body motion of a cross section of the rod with translat ional  displacement u(a )  

and rotation t i v i (a ) .  
The body strain field of the  rod is defined by the vectors wt (g) :  

w I  ~- g + - O ' g I  = 01w - - ( |  1 ) " g l .  (1.4) 

Using approximations (1.2) and (1.3), we obtain the equalities 

W 3  -= U3 q- t i V 3 i ,  W i -= O, (1.5) 

which express the body field in terms of the contour vectors u3(a) and v3i(a)  of metr ic  and torsional-flexural 
deformations: 

, , 3  =-- a s  + - o . a 3  = 0 3 , ,  - ( 0  - 1)  �9 a 3 ,  as+ - O3 , ,  + ,  
(1.6) 

v3i = b + - O"  bi = 0 3 0 "  ai ,  b + ==- 03a O. 

The last formulas define these in terms of primary unknowns - -  the displacement vector u ( a )  and the rotation 
tensor |  

For a deformed state,  the  local dynamic equations 

0 3 (1.7) (93 ~3 -~- p -~- O, ~3~ 3 + X + q = O, x ---- as+ x ~3, y3 ~ ai • Yi 

hold on Ca. If at a certain point  t3 = l;~ the forces and moments  are specified by the vectors p~ and qa, the 
point dynamic conditions 

ex3 ;ca -- PX = O, eX3y 3 -- q?, = 0 (1.8) 

are satisfied there. At the point  t3 = l~,, 

u = u~, O = Or ,  (1.9) 

where u s and O r are specified values of the displacement vector and the rota t ion tensor, respectively. 
The unknown vector functions x3(a) and y 3 ( a )  in Eqs. (1.7) are the mathemat ica l  momeiats of the 

stress vector za(g)  over the  cross section of the rod: 

~es =__ / z S J d A ,  y3 =_ f zS t i JdA .  (1.10) 

A A 

The functions x3(a) and y3(a)  have the mechanical meaning of the principal vector  and the principal moment. 
Generally, Eqs. (1.7) cannot  be solved for the force factors x3 and y3 for the following reasons: 1) the 

vector a + depends on the displacement field; 2) in dynamic  problems, the vectors of external loads p and q 
always depend on the displacements and rotations, since they include inertial forces and in static problems, 
these dependences arise when external loads change during deformation. In the  general problem of the finite 
deformation of a rod, the dynamic  equations (1.7) and (1.8) are combined with the  kinematic equations (1.6) 
and (1.9) and consti tutive equat ions that  relate the  dynamic  vectors x 3 and ya and the kinematic vectors u3 
and vai. A finite formulat ion of these relations is possible only in particular cases. An incremental formulation 
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is more general. This naturally leads to the necessity of constructing an incremental deformation model for 
the rod. 

2. F o r m u l a t i o n  of  Loca l  E q u a t i o n s  of  t h e  Mode l .  In deriving the equations of deformation of 
the rod, we use the following variation rules for vector and tensor fields: 

5 0 = 5 ~ - 0 ,  6 ~ - - - - 6 w x 1 = 1 x 6 w ,  6 a ~ - : - 6 ~ . a ~ 1 7 6  , 6 a + = a a 6 u ,  
(2.1) 

0 036~ x a, ~ 5ou3 = 035u - 5 ~ .  a + = 036u - 6 w x a  +, 5ov3i = 035~2. ai = 

Here 512(a) and 5w(a) are the spin and vector of virtual rotation, and 50 is a relative variation operator such 
that 5oa~ - 0 and for any vector v specified in the convective basis, the equalities 

5v = 6or + 5~  . v = 6or + 5 w x v  (2.2) 

hold by definition. Formulas (2.1) contain two primary virtual vectors 6u and 5w. In vector products the 
latter can be replaced by the spin tensor 512. 

Using (1.7), we write the incremental dynamic equations on C3 as 

03Am 3 -}- Ap = 0, 0 3 A y  3 + A m  + Aq = 0. (2.3) 

These are supplemented by the following dynamic and kinematic conditions at the points Ix and l~: 

eX3Am 3 -- Ap), : 0, eX3Ay 3 -- Aq~ = 0; (2.4) 

A u  = Au~, Aw = Aw~. (2.5) 

The dynamic variables are related to the kinematic variables by constitutive relations. For elastic and 
elastoplastic deformation of the rod in the region G, these can be expressed by the equation 

h o z  3 = D .  how3,  (2.6) 

where A0 is the relative increment operator defined similarly to 60 and D is the dyadic tensor of the material 
stiffness that takes the prehistory of loading into account. 

From (1.10) and (2.6) we have constitutive relations on Ca for the contour variables 

A0m 3 = E .  A0u3 + E i �9 A0va/, A0y 3 = Ei -A0u3  + E0". A0v3j (2.7) 

with the generalized stiffness tensors E -  / D J d A ,  E i -  / D t i J d A ,  and E 0 - / ' D t # j J d A .  The vectors 
A A A 

A0u3 and A0v3{ in (2.7) are calculated according to the variation rules (2.1): 

o = O3A xa o. (2.8) A0u 3 ---- 03Au  - -  Al~ .  a +, A0v3/ ---- 03Al~ �9 a i 

Using (2.8) and the equality A0y3 = a ~  3, which is valid by definition, we bring Eqs. (2.7) to the form 

A0m 3 = E .  A0u3 + F ' O 3 A w ,  A0y 3 = G .  Aoua + H . O a A w  (2.9) 

o ~ 2 1 5 2 1 5 1 7 6  are the modified stiffness tensors. Here and where F - - E j x a  ~ G -- a i x E i ,  and H -_- - a  i 
below, we assume that relations (2.9) admit the inversion 

OaAu - A ~ .  a+3 = E .  A0m a + F .  A0y 3, OaAw = C_~. A0 m3 + 1~-/�9 A0y a (2.10) 

with known compliance tensors E ,  F ,  G, and ~f/. 
Equations (2.3)-(2.5) and (2.9) or (2.10) form a complete system of local equations for increments of 

the desired functions. 
3. Var ia t iona l  F o r m u l a t i o n  of t he  P r o b l e m .  In the functional space L2(C3), we introduce arbitrary 

variations 5u, 5w, 5m 3, and 5y 3 of the kinematic and dynamic vectors. We replace the local equations (2.3)- 
(2.5) and (2.10) by the Galerkin integral equality 

((03Am A p ) .  5u + (0nAy a + Am + A q ) .  5w) dr3 + 

c3 
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+ / ( E - ~ o =  ~ + / ~ . / X o y  ~ - a ~ a , ,  + A a .  ~ + ) . ~ = 3  dt~ + f (~ .  ao=~ + H. Aoy 3 dr3 
C3 C3 

-I-((ApA -- e,~3Ax3) �9 6u + (Aq,~ -- e,~3Ay3) �9 ~w)t3=l~ 

+ e , 3 ( ( ~ , ,  - ~ , , , ) .  ~=3 + ( ~  _ ~ ) .  6y~),3=t, = 0. (3.1) 

After integration of the first integral by parts, equality (3.1) takes the form 

f ( A p .  6u - Ax 3- 036u + (Aq + A x ) .  6w - A y  3 .  036w) dr3 
C3 

Jr . / ( j~.  A0 ~3 + ~~. AOy 3 _O3Au _]_ A~'~. a t  ) .~x 3 dt 3 _~_ f ( ~ .  Z~koz3 _{_ ~_/. Aoy3-  O3Ao.~).~y3 dt 3 
C3 C3 

+ (Ap) ,  �9 &U + Aq~ �9 &')t3=b, + e~,3( A = 3 .  &u + A.y 3 �9 &,, 

+ ( A u  -- Au l ,  ) �9 6= 3 + ( A ~  -- A w j , ) .  6y3)t3=t~ ' = 0. (3.2) 

This form requires smoothness of the variation ~u and ~o~ along the base line. 
For sufficiently smooth integrands, equalities (3.1) and (3.2) are equivalent and, therefore, the following 

statement is valid. 
S t a t e m e n t .  I f  the vectors A x  3, A y  3, Au,  and/kw are an exact solution of the system of local equations 

(2.3)-(2.5) and (2.10), the integral equality (3.2) holds for any variations; if certain vectors A x  3, A y  3, Au ,  
and Aw identically satisfy the integral equality (3.2) for any variations, these vectors are an exact solution of 
the above-mentioned system. 

For the desired integrands of insufficient smoothness, the variational equation (3.2) gives a weak 
formulation of the problem of rod deformation. In this Galerkin formulation, the smoothness requirements 
are minimal: the vectors Ax 3, Ay 3, 6x 3, and $y3 are elements of the space L2(C3) and the vectors Au, Aw, 
~u, and ~u~ are elements of the Sobolev space WI(c3).  

An important consequence of (3.2) is the following equation for the virtual work of the rod: 

f ( A p .  ~ u -  Ax 3. 036u + (Aq + Ax).  ~w -- Ay  3- 03~w) dt3 + (Ap~-6u + Aq~ "6w)t3=t~ = 0. (3.3) 
c3 

It is valid for kinematically possible'variations 6u and 6w such that 6u = 6w = 0 at the point t3 = l~, and 
with satisfaction of the local equations (2.10) and point conditions (2.5). Equality (3.3) gives a weak form of 
the dynamic equations (2.3) and the point conditions (2.4). When the variables Ax 3 and Ay 3 are eliminated 
from (3.3) using equalities (2.9), it takes the meaning of a weak formulation of the problem relative to the 
kinematic variables A u  and Aw with the principal point conditions (2.5). 

For numerical analysis, it is necessary to have a matrix formulation of the variational equation (3.2). 
The important role of the relative increments in the local equations (2.7)-(2.10) should be pointed out. 
Precisely this fact determines the choice of the convective basis as the main basis for the vector fields under 
consideration. Bearing this in mind, we introduce the following decompositions of the desired functions Au, 
Aw, A0x 3, and A0y 3 

a u  = a ~ v  J, a ~  = a ~ a a ~ ,  ~ 0 =  3 = ~ ? ~ a x ' ,  ~0~  ~ = ~ a y ' ,  

which are similar to those of the variations 6u, 6w, 6x 3, and 6y 3. The increment of any vector v = a~ ~ that 
is different from the primary vectors is calculated according to (2.2): Av = A0v + A f l . v .  Here/Nov - a~ ~ 
is the relative increment and A~2 is the spin of the rotation vector increment. 

Differentiation of the convective-basis vectors can be expressed by the transformation 

o ~ I  = co .~o~,  c o = (o~,,.~)a~o 
with the spin tensor C~ Differentiation of any vector v(a)  specified in the convective basis is performed 
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by the formula 

o3 ,, = 0 %  + c ~  o~ - a % v J, 

where 0% is the relative derivative of the vector with respect to t3. The definition of the tensor C O leads to 
the formula A0C ~ = 03AFt for its relative increment. 

The above rules for variation and differentiation of vector fields are used to obtain a matrix form of 
the variational equation (3.2). Moreover, the relative increments and derivatives of vectors are basic functions 
in the equation since they are represented by matrices of increments of the vector components. 

The desired functions are calculated by the conventional procedure of successive approximations, which 
allows one to trace the process of deformation of the rod step by step from the initial (unstressed) state to 
the final state corresponding to the specified external forces. The initial values of the parameters are specified 
by the equalities a + = a~  = aj ,  b + = bi = 0 3 a i ,  b + = bi = 03ai,  C~  = C3 ~- (03aj)a J, 1~) ~ 1, and 
~3 = y3 = p = q = p~ = q~ -- 0. The material  stiffness tensor D is given initially by the Hooke's matrix. If 
it depends on strains, in the next step, it is introduced by the matrix [D + AoD], where AoD is the relative 
increment of the tensor that  corresponds to the increments of the primary vectors. 

4. N u m e r i c a l  A n a l y s i s  of  t h e  D e f o r m a t i o n  of  a R i n g  T r a n s m i s s i o n .  Wave transmissions of the 
ring type - -  radial thin rings separated by a layer of rollers - -  are used in automatic drives. The outer surface 
of the external ring (the wave former) has a tooth-shaped profile. Precise design of these transmissions for 
prescribed quality factors requires analysis of the deformation of the ring elements during operation. Forces 
which are exerted by the rigid wheel and coupling cannot be reduced to a plane system and cause spatial 
deformation of the ring set. 

For analysis of the operational deformations of a ring transmission, the latter is modeled by a layered 
inhomogeneous circular ring whose cross section A is shown in Fig. 1. We study small spatial deformations 
superposed on a planar uniformly compressed state of the ring. The analysis was performed using the 
variational equation (3.2). A linear finite-element approximation of the integrands was used. The number 
of nodes was varied within 1000-2000. Point action was approximated by an U-shaped function on length h 
of the corresponding cell. 

Below, we give results of solution of two problems of the spatial deformation of a ring transmission 
subjected to a self-balanced nonplanar force system (Fig. 2). The structure consists of three circular rings 1-3 
of constant thickness and an intermediate layer of cylindrical rollers 4 (Fig. 1). The dimensions of the rings 
are specified by the radii (in millimeters): r0 = 24.2, rl  = 25.1, r2 = 26, r3 = 30.5, and R = r4 = 31.3 and 
the width 21 = 18 m m  equal ~ for all the rings. The elastic properties of the rings are the same with Young's 
modulus D3 = 2.18- 105 N / m m  2 and Poisson ratio 7 = 0.31. The stiffness tensor in (2.6) is represented by 
the Hooke's matrix 

D1 0 0 ~ 1 
[D] = 0 D2 0 ) , D1 = D2 = ~D3(1 + .,/)-1. 

0 0 D3 

For the layer of rollers, D1 = D2 = D3 = 0. The layered inhomogeneous structure of the ring is taken into 
account in calculating the generalized stiffnesses E, Ei, and Eij. 

The first and second problems correspond to the schemes of loading of. the ring transmission whose 
cells are subjected to point loads shown in Fig 2: 

{Ap(~v0)} = {Ap(-c20)} = {O,-P/h,O},  {Aq(c20)} = {Aq(-~v0)} = {O,O,-Pl/h}, 

{Ap@20)} = {Ap(-~20)} = {O,-P/h,O},  {-Aq(~0)}  = {Aq(-~v0)} = {O,O,-Pl/h}. 

In the first problem, the self-balanced system of point forces is applied at one edge of the wave former, 
and in the second problem it is applied to both edges. In the middle parallel section of the ring, it reduces to 
the force vector Ap  and the moment vector Aq. The braces denote column vectors; the angular coordinate 

= t3/R is measured from the vertical diameter of the ring; the calculations were carried out for ~0 = ~/20 rad 
and P = 104 N. 
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I -  

Fig. 1 Fig. 2 

TABLE 1 

Problem 1 Problem 2 % rad 

Aux, mm Aw3, rad Aul, m m  ALd3, rad 

- r / 2  
- r / 3  
- r / 6  

0 
r/6 
r/3 
r/2 

-0.165 
-0.090 

0.080 
0.187 
0.078 
0.090 

-0.165 

Au2, mm Aw2, rad 

0.428 0 
0.219 0.007 

-0.240 0.008 
-0.512 0 
-0.242 -0.008 

0.218 -0.007 
0.427 0 

0.005 
0 

-0.012 
-0.022 
-0.012 

0 
0.005 

0 
0.013 
0.027 

0 
-0.027 
-0.013 

0 

Au2, mm Aw2, rad 

0.428 0 
0.219 0.001 

-0.240 0 
-0.512 -0.002 
-0.242 0 

0.218 0.001 
0.427 0 

0 
-0.001 
-0.003 

0 
0.003 
0.001 
0 

Table 1 shows the distributions of the additional displacements and rotations superimposed on the 
uniformly compressed state of the ring transmission over its outside perimeter (Aul is the out-of-plane 
displacement, Au2 is the radial displacement, Aw2 is the angle of rotation of the  generatrix about the radius, 
and Aw3 is the angle of torsion). In the first problem, the ring is bent out of the plane symmetrically about 
the horizontal diameter, and the function Aw2 is antisymmetric. In the second problem, the ring is twisted 
about the vertical diameter, and the functions Au2 and Aw2 are symmetric and the functions Aul and Aw 3 
are antisymmetric. The calculations were carried out on an IBM PC 386. The  computational program has 
been used in designing wave transmissions of the ring type with specified quality factors. 
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